Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(22): 22580-22590, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961989

RESUMO

Biodegradable and biocompatible microscale energy storage devices are very crucial for environmentally friendly microelectronics and implantable medical applications. Herein, a biodegradable and biocompatible microsupercapacitor (BB-MSC) with satisfying overall performance is realized via the combination of three-dimensional (3D) printing technique and biodegradable materials. Due to the 3D-interconnected structure of electrodes and elaborated design of electrolyte, the as-prepared BB-MSC exhibits superior overall performance than most of biodegradable devices, including a wide operation voltage of 1.8 V, high areal specific capacitance of 251 mF/cm2, good cycle stability, and favorable low-temperature resistance (-20 °C), demonstrative of reliability and practicality of our devices even in frosty environments. Importantly, the smooth degradation has been realized for the BB-MSC after being buried in natural soil for ∼90 days, and its implantation does not affect the healthy status of SD rats. Therefore, this work explores avenues for the design and construction of environmentally friendly and biocompatible microscale energy storage devices.


Assuntos
Ratos Sprague-Dawley , Animais , Ratos , Reprodutibilidade dos Testes , Capacitância Elétrica , Eletrodos , Fenômenos Físicos
2.
Front Plant Sci ; 14: 1075013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799558

RESUMO

High temperatures have a significant impact on plant growth and metabolism. In recent years, the fruit industry has faced a serious threat due to high-temperature stress on fruit plants caused by global warming. In the present study, we explored the molecular regulatory mechanisms that contribute to high-temperature tolerance in kiwifruit. A total of 36 Hsf genes were identified in the A. chinensis (Ac) genome, while 41 Hsf genes were found in the A. eriantha (Ae) genome. Phylogenetic analysis revealed the clustering of kiwifruit Hsfs into three distinct groups (groups A, B, and C). Synteny analysis indicated that the expansion of the Hsf gene family in the Ac and Ae genomes was primarily driven by whole genome duplication (WGD). Analysis of the gene expression profiles revealed a close relationship between the expression levels of Hsf genes and various plant tissues and stress treatments throughout fruit ripening. Subcellular localization analysis demonstrated that GFP-AcHsfA2a/AcHsfA7b and AcHsfA2a/AcHsfA7b -GFP were localized in the nucleus, while GFP-AcHsfA2a was also observed in the cytoplasm of Arabidopsis protoplasts. The results of real-time quantitative polymerase chain reaction (RT-qPCR) and dual-luciferase reporter assay revealed that the majority of Hsf genes, especially AcHsfA2a, were expressed under high-temperature conditions. In conclusion, our findings establish a theoretical foundation for analyzing the potential role of Hsfs in high-temperature stress tolerance in kiwifruit. This study also offers valuable information to aid plant breeders in the development of heat-stress-resistant plant materials.

3.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555370

RESUMO

Auxin plays a critical role in organogenesis in plants. The classical auxin signaling pathway holds that auxin initiates downstream signal transduction by degrading Aux/IAA transcription repressors that interact with ARF transcription factors. In this study, 23 MoIAA genes were identified in the drumstick tree genome. All MoIAA genes were located within five subfamilies based on phylogenetic evolution analysis; the gene characteristics and promoter cis-elements were also analyzed. The protein interaction network between the MoIAAs with MoARFs was complex. The MoIAA gene family responded positively to NAA treatment, exhibiting different patterns and degrees, notably for MoIAA1, MoIAA7 and MoIAA13. The three genes expressed and functioned in the nucleus; only the intact encoding protein of MoIAA13 exhibited transcriptional activation activity. The shoot regeneration capacity in the 35S::MoIAA13-OE transgenic line was considerably lower than in the wild type. These results establish a foundation for further research on MoIAA gene function and provide useful information for improved tissue culture efficiency and molecular breeding of M. oleifera.


Assuntos
Moringa oleifera , Moringa oleifera/genética , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Front Plant Sci ; 13: 950945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105698

RESUMO

Toona ciliata is a traditional woody plant that can be used as a medicinal material in China. The extracts of its roots, stems, leaves, and flowers all have a wide range of bioactive compounds. However, T. ciliata has been facing an unresolved pest problem caused by Hypsipyla robusta Moore (HRM), which seriously affects its growth and development. In this study, the expression level of TcMYB3 gene reached the maximum (28-fold) at 12 h and transcriptome sequencing of young stems eaten by HRM for 0, 3, 12, and 21 h were performed. A large number of differentially expressed genes (DEGs) were identified including jointly up-regulated genes (263) and down-regulated genes (378). JA synthesis and signaling transduction, terpene biosynthesis, and MAPKs signaling pathway were analyzed in depth and found that TcOPR3, TcJAR1, TcJAZs, and TcTPS9 genes possessed anti-insect potential. Moreover, MYB and ERF transcription factor (TF) families were significantly strengthened to the point that they may participate in induced defense mechanisms in T. ciliata. These data not only provide insights into the molecular mechanisms in resistance of T. ciliata to HRM but also helps to explore the new biocontrol strategies against insects in eco-friendly woody plants.

5.
Physiol Mol Biol Plants ; 28(5): 935-946, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35722507

RESUMO

Moringa oleifera, is commonly cultivated as a vegetable in tropical and subtropical regions because of nutritional and medicinal benefits of its fruits, immature pods, leaves, and flowers. Flowering at the right time is one of the important traits for crop yield in M.oleifera. Under normal conditions, photoperiod is one of the key factors in determining when plant flower. However, the molecular mechanism underlying the effects of a long-day photoperiod on Moringa is not clearly understood. In the present study, deep RNA sequencing and sugar metabolome were conducted of Moringa leaves under long-day photoperiod. As a result, differentially expressed genes were significantly associated with starch and sucrose pathway and the circadian rhythm-plant pathway. In starch and sucrose pathway, sucrose, fructose, trehalose, glucose, and maltose exhibited pronounced rhythmicity over 24 h, and TPS (trehalose-6-phosphate synthase) genes constituted key regulatory genes. In an Arabidopsis overexpression line hosting the MoTPS1 or MoTPS2 genes, flowering occurred earlier under a short-day photoperiod. These results will support molecular breeding of Moringa and may help clarify to genetic architecture of long-day photoperiod related traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01186-4.

6.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830008

RESUMO

The plant embryogenic callus (EC) is an irregular embryogenic cell mass with strong regenerative ability that can be used for propagation and genetic transformation. However, difficulties with EC induction have hindered the breeding of drumstick, a tree with diverse potential commercial uses. In this study, three drumstick EC cDNA libraries were sequenced using an Illumina NovaSeq 6000 system. A total of 7191 differentially expressed genes (DEGs) for embryogenic callus development were identified, of which 2325 were mapped to the KEGG database, with the categories of plant hormone signal transduction and Plant-pathogen interaction being well-represented. The results obtained suggest that auxin and cytokinin metabolism and several embryogenesis-labeled genes are involved in embryogenic callus induction. Additionally, 589 transcription factors from 20 different families were differentially expressed during EC formation. The differential expression of 16 unigenes related to auxin signaling pathways was validated experimentally by quantitative real time PCR (qRT-PCR) using samples representing three sequential developmental stages of drumstick EC, supporting their apparent involvement in drumstick EC formation. Our study provides valuable information about the molecular mechanism of EC formation and has revealed new genes involved in this process.


Assuntos
Calo Ósseo/crescimento & desenvolvimento , Moringa oleifera/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Calo Ósseo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Moringa oleifera/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética , Técnicas de Embriogênese Somática de Plantas
7.
Front Bioeng Biotechnol ; 9: 626628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912544

RESUMO

The drumstick tree is a fast-growing multipurpose tree with a large biomass and high nutritional value. However, it has rarely been exploited as a protein source. This study investigated solid-state fermentation induced by Aspergillus niger, Candida utilis and Bacillus subtilis to obtain high-quality protein feed from drumstick leaf flour. The results showed that fermentation induced significant changes in the nutritional composition of drumstick leaf flour. The concentrations of crude protein, small peptides and amino acids increased significantly after fermentation. The protein profile was also affected by the fermentation process. Macromolecular proteins in drumstick leaf flour were degraded, whereas other high molecular weight proteins were increased. However, the concentrations of crude fat, fiber, total sugar and reducing sugar were decreased, as were the anti-nutritional factors tannins, phytic acid and glucosinolates. After 24 h fermentation, the concentrations of total phenolics and flavonoids were increased. The antioxidant capacity was also significantly enhanced.

8.
Open Life Sci ; 15(1): 840-847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33817270

RESUMO

Artificial induction of polyploidy is widely used in breeding programmes to improve the agronomic traits. The drumstick tree (Moringa oleifera Lam.) has a range of potential commercial uses, as the vegetative organs have high nutritional, medicinal, and feed values. In the present study, in vitro tetraploidisation in drumstick tree was performed by treating leaf segments with colchicine and subsequently verifying the ploidy levels. For polyploidisation, explant survival and regeneration rates were affected more by exposure time than by colchicine concentration, and the highest polyploidisation efficiency was observed at 500 mg/L colchicine for 3 days, which yielded 21% tetraploids. The morphological characteristics and contents of seven fodder-related nutrients (crude protein, ether extract, ash, acid detergent fibre, neutral detergent fibre, calcium, and phosphorus) in the leaves and shoots were compared between tetraploid and diploid drumstick trees. The resulting tetraploids showed significantly enhanced leaf and stomatal size. In addition, the contents of seven fodder-related nutrients were higher, although to varying degrees, in tetraploids than in diploids. The results indicated that the tetraploid produced in this study exhibited superior agronomical traits and improved biomass yield than diploids, and may represent excellent raw materials for fodder to enhance biomass and nutrition.

9.
Chem Commun (Camb) ; 55(79): 11944-11947, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531457

RESUMO

A novel hexanuclear copper(ii)-based complex, [Cu6(tpbb)2(NO3)12] (1), was synthesized, which shows potent cytotoxicity to hepatoma carcinoma cells by inducing apoptosis and apoptosis-related processes. Furthermore, mechanistic investigations based on proteomes revealed that the induced apoptosis was mediated by acting on several targets and multiple pathways in a pleiotropic way.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Complexos de Coordenação/química , Cobre/química , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Dano ao DNA/efeitos dos fármacos , Desenho de Fármacos , Humanos , Ligantes , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
PeerJ ; 7: e7063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218125

RESUMO

WRKY proteins belong to one of the largest families of transcription factors. They have important functions in plant growth and development, signal transduction and stress responses. However, little information is available regarding the WRKY family in drumstick (Moringa oleifera Lam.). In the present study, we identified 54 MoWRKY genes in this species using genomic data. On the basis of structural features of the proteins they encode, the MoWRKY genes were classified into three main groups, with the second group being further divided into five subgroups. Phylogenetic trees constructed from the sequences of WRKY domains and overall amino acid compositions derived from drumstick and Arabidopsis were similar; the results indicated that the WRKY domain was the main evolutionary unit of WRKY genes. Gene structure and conserved motif analysis showed that genes with similar structures and proteins with similar motif compositions were usually clustered in the same class. Selective pressure analysis indicated that although neutral evolution and positive selection have happened in several MoWRKY genes, most have evolved under strong purifying selection. Moreover, different subgroups had evolved at different rates. The levels of expression of MoWRKY genes in response to five different abiotic stresses (salt, heat, drought, H2O2, cold) were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR), with the results indicating that these genes had different expression levels and that some may be involved in abiotic stress responses. Our results will provide a foundation for cloning genes with specific functions for use in further research and applications.

11.
Biosci Biotechnol Biochem ; 82(5): 768-774, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29517413

RESUMO

The drumstick tree has traditionally been used as foodstuff and fodder in several countries. Due to its high nutritional value and good biomass production, interest in this plant has increased in recent years. It has therefore become important to rapidly and accurately evaluate drumstick quality. In this study, we addressed the optimization of Near-infrared spectroscopy (NIRS) to analyze crude protein, crude fat, crude fiber, iron (Fe), and potassium (K) in a variety of drumstick accessions (N = 111) representing different populations, cultivation programs, and climates. Partial least-squares regression with internal cross-validation was used to evaluate the models and identify possible spectral outliers. The calibration statistics for these fodder-related chemical components suggest that NIRS can predict these parameters in a wide range of drumstick types with high accuracy. The NIRS calibration models developed in this study will be useful in predicting drumstick forage quality for these five quality parameters.


Assuntos
Ração Animal/análise , Análise de Alimentos , Moringa oleifera/química , Folhas de Planta/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Biomassa , Calibragem , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...